
J.  Fluid Mech. (1995), 001. 297, pp.  327-355 
Copyright 0 1995 Cambridge University Press 

327 

Analytical solutions for the actuator disk with 
variable radial distribution of load 
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Agder College, Grimstad, Norway 

(Received 17 March 1994 and in revised form 23 March 1995) 

An analytical method somewhat analogous to finite wing theory has been developed 
which enables the flow induced by a linearized propeller actuator disk with variable 
radial distribution of load to be solved in closed form for the first time. Analytical 
solutions are given for various load distributions including the case of an arbitrary 
polynomial loading. As in finite wing theory, the case of elliptic loading is exception- 
ally simple and the induced velocities and stream function are simple expressions of 
elementary functions. Results are also given for a practical propeller load distribution 
with finite hub. The method can also be used to solve a wide range of analogous 
electromagnetic problems. 

1. Introduction 
The problem of calculating the velocity fields induced by an actuator disk is of 

technological interest to both the aeronautical and hydronautical industries. Because 
of the obvious difficulties of performing unsteady calculations on the continuously 
changing geometry resulting from the relative rotation of a propeller and its vehicle, 
an actuator disk approach is sometimes employed even in sophisticated Navier- 
Stokes calculations such as those of Stern et al. (1988). In the aerospace industry, 
the propeller influence on the aircraft is routinely calculated using boundary integral 
(panel) methods incorporating some kind of actuator disk. To model compressibility 
effects these methods employ a wide range of compressibility corrections of Gothert- 
Prandtl-Glauert type, and the theory presented here can also be extended into the 
high subsonic regime in this manner. For hydronautical applications, flow velocities 
are always so small a fraction of the very high speed of sound in water (1531 m s-l) 

that compressibility effects are negligible. A typical method of this type is a version 
of the VSAERO computer code by Strash et al. (1984), which represents the actuator 
disk as discrete panels, and the slipstream for a variable radial distribution of load as 
concentric cylinders of panels. This approach has a number of practical disadvantages, 
and cannot really be considered a fully satisfactory solution to the problem. A more 
satisfactory brute-force method is that of Clark & Valarezo (1990), which solves 
using a panel method for the isolated propeller flow in the blade-fixed coordinate 
system to obtain a time-averaged perturbation to the free stream for an additional 
panel calculation in the vehicle-fixed coordinate system. This method can predict 
propeller-vehicle interactions satisfactorily but has the disadvantage that a complete 
detailed panel model of the propeller must be available. Hence it cannot be used 
in initial design to explore the effect of different blade loadings on the vehicle. An 
analytical solution for arbitrary radial loading could be incorporated into boundary 
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integral methods to combine all the advantages of the above methods together with 
greater simplicity. It is the purpose of this article to present such a solution derived 
using the methods of classical analysis. 

The analytical solution for the velocity fields induced by an actuator disk with 
constant radial distribution of load has been given by Hough & Ordway (1965), 
who also constructed by superposition the solution for general radial distributions of 
load as integrals of the constant-loading solutions. However, these integrals appeared 
sufficiently complex to discourage anything other than numerical integration. The 
method presented here is based on construction of the velocity and potential fields 
induced by a ring vortex as integrals over the allowed values of the separation constant 
of the eigensolutions of Laplace’s equation in cylindrical coordinates. The ring vortex 
solutions are then combined to give the solutions for the constant-load and general 
actuator disks as double and triple integrals respectively of the eigensolutions. The 
axial integrations can be performed immediately, and the solution for the constant- 
loaded disk is then completed by integrating over the values of the separation 
constant. 

If, for the general actuator disk, the integral over the values of the separation 
constant is performed before the radial integration, then equations closely related to 
those of Hough & Ordway (1965) and an additional equation for the vector potential 
are obtained. It has been found that by representing the radial variation of axial 
velocity at the actuator disk as an arbitrary polynomial, an additional integration 
of these equations can be performed which reduces the solutions to integrals of 
elementary functions. 

If the radial integrations in the general integrals are performed first, an entirely 
new method is obtained which gives completely analytic solutions in terms of elliptic 
integrals for the velocities and vector potential by representing the radial variation of 
load as an even polynomial. For the special case of an elliptic radial distribution of 
load, analytic solutions for the velocities and vector potential can also be obtained 
by this method which are simple expressions involving only elementary functions. 

In $2 below, the representation of the fields of a ring vortex in terms of eigensolu- 
tions of Laplace’s equation is derived, and these are then integrated to give the usual 
expressions in terms of elliptic integrals for the velocity components and vector po- 
tential, together with an additional elliptic integral expression for the scalar potential, 
which is believed to be new. In $3 the equations for the constant-loaded actuator disk 
are derived, which are then integrated to give the expressions obtained by Hough & 
Ordway (1965) for the velocity fields and new expressions for the vector and scalar 
potentials. Section 4 gives the derivation of the solutions for the generalized actuator 
disk in terms of eigenfunction integrals and also discusses optimum load distributions 
within the context of actuator disk theory. In $5 the methods of solution developed 
for the actuator disk equations are described. Explicit formulae and results are given 
for parabolic and elliptic radial distributions of load, and results are presented for 
a practical propeller load distribution with a finite hub. Simplified formulae for the 
axis of symmetry are also given. Table 1 lists the special functions used. 

2. The velocity and potential fields induced by a ring vortex 
The starting point for the development of the current method is the fields induced 

by a ring vortex. From the Biot-Savart law the velocity dV induced at position r by 
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Special function 

Elliptic integral of the second kind 
Complete elliptic integral of the second kind 
Elliptic integral of the first kind 
Bessel function of the first kind 
Complete elliptic integral of the first kind 
Legendre function of the second kind 
Associated Legendre function of the second kind 
Gamma function 
Dirac delta function 
Heaviside step function 
Heuman’s Lambda function 

TABLE 1. Special functions used 

a vortex element Tdl‘ placed at position r’ is given by 

r d l ’  x (r - r ’ )  
4n lr - rq3 ’ 

dV(r) = 

The velocity field of a ring vortex can be constructed as the superposition of the 
velocities induced by each vortex line element making up the vortex. In cylindrical 
polar coordinates (r, 4, z), a vortex ring of radius a placed at z = z‘ has by symmetry 
a zero azimuthal velocity component V#(r,  z) and the other two velocity components 
are gwen by the integrals below: 

Solutions can be stated for these integrals in terms of complete elliptic integrals, but 
these are relatively intractable for constructing the flow within a slipstream as either 
a surface or volume distribution of ring vortices. However, for field points along the 
axis of symmetry then Vr(O,z) = 0, and (2.3) can be integrated to give the simple 
result 

The velocity field V induced by a ring vortex can also be obtained from either the 
velocity potential @ through V = V@, or from the vector (solenoidal) potential A 
through V = V x A. For axisymmetric flows A+ is the only non-zero component of A 
and y = rA+, where y is the axial stream function. 

For incompressible inviscid flow @, A and the velocity V all satisfy Laplace’s 
equation. Hence for a ring vortex centred on the origin normal to the z-axis, the 
V z ( r , z )  field induced by the vortex is a superposition of the allowable solutions of 
Laplace’s equation obtained by separating the variables. The only elementary solution 
finite on the z-axis and which -, 0 as Iz - z’l -, 00 is 

~ ( r ,  z) = Ase-Slz-z‘lJO(sr). (2.5) 
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All positive values of s are allowable, so the V, field induced by the ring vortex is of 
the form 

V,(r, z )  = A(s)e-S'Z-"lJo(sr)ds. (2.6) Lrn 
On the axis of symmetry, V,(O,z) must reduce to (2.4) and from (2.6), it is also given 
by the Laplace transform of A(s).  Hence inverting the Laplace transform to solve for 
A(s)  (Spiegel 1965) gives the alternative integral representation below for VJr,  z )  : 

sJl(sa)Jo(sr)e-SIZ-Z'Ids. 

The other fields corresponding to (2.7) are clearly 

V,(r,z) = = drn sJI(sa)J1 (sr)e-SIZ-Z'lds, 'r 
@(r,z )  = - '5" 1" 51(sa)J~(sr)e-s~"-"~ds, 

Ab(r , z )  = 9 lrn J~(sa)J1(sr)e-sti'-"lds. (2.10) 

In (2.8) above, the positive sign is to be taken for ( z  - z') > 0 and the negative sign 
for ( z  -z') < 0. The reverse is true for (2.9). This does not give rise to a discontinuous 
radial field as Vr(r,z) = 0 for ( z  - z') = 0. However, the scalar potential changes by 
-r at the plane of the ring vortex when passing through the ring in the direction of 
positive z .  

Equations (2.7) to (2.10) above can be obtained in a number of other ways and 
lie at the core of the current work. They have been known since the early days of 
fluid mechanics and are given by Basset (1888) and Lamb (1932), but later general 
texts have tended to omit them. Wu (1962) has applied these formulae to the heavily 
loaded actuator disk. 

Equation (2.10) can be integrated (Gradshteyn & Ryzhik 1980) to give 

where 
(a  - r)2 + ( z  - z')2 

O l E l +  
2ar 

This corresponds to the axisymmetric stream function 

(2.11) 

(2.12) 

(2.13) 

Equation (2.13) is a central element of the approaches of Hough & Ordway (1965) 
and Greenberg & Powers (1970). It is the Green's function for the stream function 
induced by a distribution of ring vortices. 

The Legendre function above is singular for unit argument, corresponding to the 
infinite velocities induced by a vortex ring as the ring itself is approached. This means 
that approaches using (2.13) as the starting point necessarily involve singular integrals. 
A recurrent theme of the current work is to side-step (2.13) and instead use (2.7) to 
(2.10) directly to construct the flow induced by distributions of ring vortices. The 
advantage of this is that for the eigensolutions resulting from separation of variables, 
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the variables are indeed separated, which permits repeated integration within multi- 
dimensional integrals to be performed analytically and in the most convenient order. 
Equations (2.7) to (2.9) can also be integrated to give closed-form solutions for the 
other fields. If we define 

4ar 
(a  + r)2 + ( z  - z’)2 

kl = (2.14) 

then the velocity fields are given by (Prudnikov, Brychkov & Marichev 1992): 

f ( Z  - z’)kl [(2 - k:)E(kl )  - 2(1 - k:)K(kl)]  
9 (2.15) 8n( 1 - k ; ) ( ~ r ~ ) l / ~  Vr(r,z) = 

Tkl  [k;(a2 - r2 - z2)E(k1) + 4ra(l - k:)K(kl)]  
16a(l - k : ) ( r ~ ) ~ / ~  

(2.16) 

These results can of course also be obtained directly from (2.2) and (2.3). The scalar 
potential of the ring vortex can be obtained by integrating (2.9) (Prudnikov et al. 
1992, but note the typographical errors). Let 

Vz(r ,z)  = 

z - z ‘  
( (z  - z’)2 + (r  - a)2)1/2 

= arcsin (2.17) 

where the function arcsin(x) is defined everywhere in this article on the interval 
(-7r/2, a/2). Then 

and 

(2.18) 

(2.19) 

The Bessel-Laplace integral of (2.9) is not well known and infrequently tabulated. 
The Heuman Lambda function A0 which appears in (2.18) and (2.19) forms a key 
element in the solutions derived by Hough & Ordway (1965) for the uniformly loaded 
actuator disk, and it also occurs in most of the additional solutions presented here. 
It is tabulated by Abramowitz & Stegun (1972) and is defined in terms of elliptic 
integrals of the first and second kinds. If k’ is the complementary modulus for an 
elliptic integral of modulus k, then 

(2.20) 

(Prudnikov et al. 1992; Abramowitz & Stegun 1972). The solution given by (2.18) 
and (2.19) for the scalar potential of a ring vortex is more useful computationally 
than the usual solid angle formula and is believed to be new. 

2 
Ao(B, k )  = - [E(k)P(B, k’) + K(k)E(B,  k’) - K(k)F(B, k’)] a 

3. Actuator disk with uniform axial inflow 
For an unsteady incompressible flow the instantaneous velocity fields are linearly 

related to the instantaneous vorticity distribution via the Biot-Savart law. Hence 
the time-averaged velocity fields are given by the steady flow induced by the time- 
average of the vorticity distribution. If the bound circulation of the blades of a 
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FIGURE 1. Self-conserving vortex systems of the uniformly loaded actuator disk. The slipstream 
contraction is not shown. (a) Vortex system 1, which induces the axial and radial velocities. (b)  
Vortex system 2, which induces the azimuthal velocity. 

propeller is represented by straight lifting lines which lie in a plane, then the time- 
averaged velocity field induced by the propeller is correctly given by the actuator 
disk model. The instantaneous pressure field is nonlinearly related to the vorticity 
via the Bernoulli equation, so the thrust and torque on the propeller are only given 
to the approximation to which the Bernoulli equation can be linearized for small 
perturbations or in the limit of infinite blade number when the flow becomes steady. 
Hence the thrust and torque of a propeller are blade-number dependent, as is the 
optimum distribution of circulation along the blades. 

The actuator disk with uniform axial inflow has been intensively studied and has 
been used as the basic building block for general methods which construct the general 
actuator disk solution by superposition. The time-average of the bound and shed 
vorticity of the propeller is the superposition of the vorticity distributions shown 
in figure 1. There are four vortex distributions which induce perturbations to the 
free-stream flow. These are: 

(i) a vortex tube consisting of ring vortices distributed over a contracting tube shed 
from the edge of the actuator disk and extending to downstream infinity; 

(ii) the constant-strength hub vortex along the axis of symmetry of the disk and 
extending from the disk centre to downstream infinity; 

(iii) a distribution of radial vorticity on the actuator disk; 
(iv) a surface distribution of vorticity on the slipstream surface normal to the ring 

vortices and equal in strength to the hub vortex. 
Superposition of these distributions results in helical vortex lines in the slipstream 

surface. Distribution (i) forms a vorticity-conserving system and distributions (ii), 
(iii) and (iv) together also form a vorticity-conserving system. Hence these two 
systems can be superimposed in any relative proportion while still conserving vorticity. 
Distribution (iii) results from the lifting lines of the propeller blades and distributions 
(i), (ii) and (iv) result from the the root and tip vortices shed from these lifting lines. 
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Distribution (ii) gives an infinite force on the actuator disk, and therefore this simple 
model cannot be used directly to estimate propeller efficiencies. For the case of a 
contra-rotating propeller or a single-rotating propeller when rotation in the propeller 
wake can be neglected, then only distribution (i) is considered and crude estimates of 
propeller efficiency can then be obtained from elementary actuator disk theory. The 
power P supplied to a propeller with frequency of rotation n is related to the torque 
Q through the relation P = 2nnQ. Hence the torque can be estimated indirectly from 
the efficiency q,  the thrust coefficient T and the power coefficient c from the identity 
below (Von Mises 1945) 

2T and z = T 2P 
0 np U& R,‘ np U$ R,‘ . 

q = -, where c f 

For the linearized actuator disk, the two vorticity-conserving systems above are 
essentially independent and their induced velocity fields can be solved separately. 

3.1. Longitudinal vortex system 
This consists of the vortex distributions (ii), (iii) and (iv) above. By using the axial 
symmetry of the distributions together with Stoke’s theorem, it is simple to show 
that regardless of axial position or the contraction of the slipstream, V, is the only 
non-zero velocity component, and is given by 

r h u b  V ~ ( r , z )  = - (r < R(z)  and z > 0), 
2nr 

Vb(r,z) = 0 (r > R(z )  or z < 0). (3.3) 
Hence this velocity field does not influence the slipstream contraction directly. The 
velocity induced by distributions (ii) and (iv) on the lifting-line distribution (iii) is 
clearly one half of that given by (3.2). 

3.2. Ring vortex system 
This vortex system is directly responsible for the slipstream contraction and all axial 
and radial velocities. Using the integral representation in terms of Bessel functions 
developed earlier, and introducing an axial distribution function y(z) for the ring 
vortices, then we obtain 

Vr(r, z )  = le lm +y(z’)sR(z’)J1(sR(z‘))J1(sr)e-SIZ-”~dsdz’, (3-4) 

Vz(r,  z )  = Lrn lrn y(z’)sR(z’)Jl(sR(z’))Jo(sr)e-s12-”lds dz’, (3.5) 

A$(r, z )  = 1“ he y(z’)R(z’)J1(sR(z’))J1(sr)e-slz-z~Ids dz’. (3.6) 

In these expressions R(z )  is the slipstream radius at axial coordinate z and y(z )  is 
the vortex density per unit axial coordinate. Equations (3.4) to (3.6) are extremely 
tractable because we can choose the order of integration as necessary. For example, 
if we set r = 0 in (3.5) and integrate first with respect to s (Gradshteyn & Ryzhik 
1980) we obtain 

1 1” y(z’)R*(z’)dz’ V,(O,Z) = - 
2 (R*(z’) + (Z - ~ ’ ) 2 ) 3 / 2 ‘  

(3.7) 

This result can of course be obtained by more elementary means. 
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Infinitely far downstream then clearly y(z + 00) = ud, the constant axial per- 
turbation velocity everywhere within the slipstream at downstream infinity. For the 
linearized actuator disk, the convection velocity of the ring vortices is approximated 
by the free-stream velocity U ,  and therefore y ( z )  is constant and equal to u d .  
We can also approximate R(z) by &, the radius of the actuator disk. With these 
approximations, (3.7) can be integrated again to give 

Z V,(O,Z) = - 1 + ud 2 { (R; + z2)l/* 

This axial velocity distribution is derived by Koning (1935) using somewhat different 
assumptions than those made here. 

Putting z = 0 in (3.8) gives V,(r,O) = ud/2 for r c &, in agreement with elementary 
actuator disk theory, and hence applying the Bernoulli equation on both sides of the 
disk with V, = 0 gives the thrust coefficient as 

as in the elementary theory. 

to z' gives 
Substituting R(z') = %, and y(z ' )  = ud in (3.4) to (3.6) and integrating with respect 

(3.10) V,(r,z) = ~ -;& 1" e-s~l'~J1(s%)JI(Sr)ds, 

(3.11) 

(3.12) 

2 - e4Z 
A+(F-,z) = vdR, I" ( ) Jl(s%)Jl(sr)ds (z 2 0), (3.13) 

2 .  
U;Ra la Jl(s&)J1 (sr)e-sI'I 

Ag(r,z) = - ds ( z  < 0). 
S 

(3.14) 

For the uniformly loaded actuator disk, it is also possible to define a scalar potential 
@ ( r , z ) .  From inspection of (3.10) to (3.14) this is given by 

Using the integral tables of Gradshteyn & Ryzhik (1980) and Prudnikov et al. (1992), 
(3.10) to (3.15) can be integrated again with respect to s to give the complete solution 
for fields induced by a linearized actuator disk with constant radial loading. The 
results are 

(3.16) 

(3.18) 
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encloses the higher enthalpy region of the flow. 
FIGURE 2. Perturbation streamline pattern for the uniformly loaded actuator disk. The broken line 

(3.19) 

(3.22) 
where 

z2 + Y' + R,' 
2r% 

and o = Z 
k G ((& :&' r)2 + 2 2  ) 1/2 j = arcsin 

Equations (3.16) to (3.18) are the solutions given by Hough & Ordway (1965) for the 
velocity fields induced by a uniformly loaded actuator disk, which they derived by a 
quite different method from the above. They did not gwe analytical solutions for the 
vector and scalar potentials and (3.19) to (3.22) are believed to be new. 

The axial stream function is given by v ( r , z )  = rA$(r , z )  and the perturbation 
flow streamline pattern derived from (3.19) and (3.20) is plotted in figure 2. The 
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RGURE 3. Slipstream contractions for the uniformly loaded actuator disk for different thrust 
coefficients. The curves show the streamlines which pass through the rim of the disk. 

perturbation streamlines correspond to the limiting case as the thrust coefficient t 
tends to infinity, which is equivalent to the case of a propeller rotating in still air. 
The linearized theory presented here is of course more accurate the smaller the value 
of z. If the perturbation stream function is combined with that for a uniform free 
stream, then the slipstream contraction can be calculated. Figure 3 gives the predicted 
slipstream contractions for various values of the thrust coefficient z. 

Equations (3.21) and (3.22) could be used to construct by superposition an actuator 
disk model with variable radial loading suitable for implementation in a potential- 
based panel method. In the next section a much better general method is derived, 
which allows analytic solutions to be obtained for essentially arbitrary radial loading. 
This method is however best suited for implementation in a velocity-based panel 
method where a velocity potential need not be defined. 

4. Actuator disk with arbitrary radial loading 
4.1. General formulae forjelds induced by the ring vortex system 

In the linear limit where radial contraction is not considered, the case of arbitrary 
radial loading is obtained as a superposition of a radial distribution of vortex tubes, 
with each vortex tube having constant radius and surface ring vortex density. With y(r) 
redefined as the strength of the vortex tubes, superposition of elementary solutions 
such as (3.10) to (3.14) gives 

Vr(r,z) = -- 1“ drn y(r’)e-’IzIr’J1(sr’)J1 (sr)ds dr’, 
2 

Vz(r, z )  = 1 I“ 1% y(r’)(2 - e-“’”l)r’Jl(sr’)Jo(sr)ds dr‘ (z 3 0) , 

Vz(r,z) = 1 2 I“ ~my(r ’ ) e - s l z l r ’J l ( r r ’ )J~(s r )dsdr ’  ( z  < 0 ) ,  

(4.2) 

(4.3) 

2 
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Ab(r,  z )  = f 1“ Lrn y(r’)  ( -:””) r‘Jl(sr’)Jl(sr)ds dr’ (z 2 O ) ,  (4.4) 2 

e-SIZI 
Ab(r , z )  = - Lcoy(r’)Tr’J1(sr’)Jl(sr)dsdr’ ( z  < 0) .  (4.5) 

For z = 0, (4.2) and (4.3) above both give 

V,(r,O) = 1“ lco y(r’)r’Jl(sr‘)Jo(sr)dsdr’. (4.6) 

Since y ( r )  is zero for r> &, the limit of the radial integration of (4.6) can be replaced 
by 00 to give the first-order Hankel transform of y, Y(s). Therefore 

co 
V,(r,O) = 4 ?(s)Jo(sr)ds. (4.7) 

Taking the derivative of both sides of this equation with respect to r inverts the 
Hankel transform to give 

Equation (4.8) is a key element of the method presented here. It determines y ( r )  from 
a prescribed axial velocity distribution at the actuator disk. Using this equation, the 
velocities and vector potential induced by an actuator disk with arbitrary prescribed 
axial inflow can be written as 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

For any radial distribution of axial velocity which goes to zero continuously at 
the actuator disk rim, the upper limit of the radial integration can be conveniently 
replaced with &. However, for distributions which fall discontinuously to zero at 
the rim, such as a uniform distribution, the limit of integration must be taken as 
& + E,  where E is an infinitesimal positive quantity. This ensures that the delta- 
function component of the derivative of V,(r’,O) is completely captured by the range 
of integration. An immediate consequence of (4.10) is that for arbitrary axial velocity 
distribution, as in elementary momentum theory, 

(4.14) 

Equation (4.9) gives immediately the result that Vr(r , z )  is an even function of z, and 
hence continuous across the actuator disk. 
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For an arbitrary distribution of tube vortices, each tube vortex is also a surface 
of constant enthalpy on which Bernoulli’s equation holds. Applying the Bernoulli 
equation on each side of the actuator disk in the same manner as for elementary 
momentum disk theory, making use of (4.14) , the continuity of V, across the disk, 
together with the condition of continuity of pressure and mechanical equilibrium far 
downstream, it is straightforward to show that the pressure discontinuity across the 
actuator disk is related to the axial and azimuthal velocities by 

(4.15) 

In the linear limit, this becomes 

AP(r) = 2pU,V2(r,0). (4.16) 

Therefore in the linear limit, the load distribution on the disk is proportional to the 
axial velocity at the disk. However, there is no need to approximate (4.15) by (4.16) if 
we work directly with prescribed axial velocity at the actuator disk. In this case, the 
only approximation made by the theory is to neglect the contraction of the vortex 
tubes. 

An arbitrary radial distribution of axial velocity can be split into a constant 
velocity distribution and a distribution which vanishes at the rim of the actuator 
disk. The resultant velocity fields are then the sums of the fields induced by these 
two distributions. Since we have already solved for the fields induced by a constant 
velocity distribution, without loss of generality we can assume that the load vanishes 
at the rim of the disk. Integrating (4.9) to (4.13) by parts and exploiting standard 
Bessel identities and the properties of Hankel transforms results in the alternative 
expressions below for any distribution which falls to zero at the actuator disk rim: 

V&, z )  = - Lk 1“ Vz(r’, O)e-StZtsr’Jo(sr’)Jl(sr)ds dr‘, (4.17) 

VJr, z )  = 2V2(r,0) - 111 Am Vz(r’,O)e-SIZlsr’Jo(sr’)Jo(sr)dsdr‘ ( z  2 0), (4.18) 

Vz(r ,  z )  = Lk lw V.(r’, O)e-s’ztsr’Jo(sr‘)Jo(sr)dsdr’ ( z  < 0), (4.19) 

Ab(r, z )  = 1 lr r’Vz(r’, O)dr’-Lk Lrn Vz(r’, O)e-stl’tr’J&r’)Jl(sr)ds dr’ ( z  2 0) , (4.20) 

A&,z) = 6“ l“ Vz(r’,O)e-StZtr’JO(sr’)J~(sr)dsdr’ ( z  < 0). (4.21) 

4.2. Azimuthal velocity induced by the longitudinal vortex system 
The azimuthal velocity is zero outside the slipstream and does not vary with axial 
position within the slipstream. From Stokes’s theorem, it is given by 

r 

(4.22) 

where T,(r) is the total axial flux of vorticity within radius r of the axis of symmetry. 
From vortex conservation, then rs(r) is also equal to the total strength of the lifting 
line vortices of the propeller blades at radius r .  
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4.3. Circulation distribution 

From the Kutta-Joukowski law, the element of thrust d T  acting on the propeller 
blades in the annular region between r and r +dr for a propeller rotating with angular 
velocity 52 is given by 

This can be integrated to give a total thrust 

T = p  J” (n,’ - v’(r’’m)) 2 fs(r’)dr’. 
0 

Similarly, the total torque Q is given by 

Q = p r’( Urn + Vz(r’, O))f,(r‘)dr’. 

(4.23) 

(4.24) 

(4.25) 

The thrust on an annular region of the actuator disk can also be calculated from the 
pressure discontinuity given by (4.1 5). This gives 

(4.26) 

Equating (4.23) and (4.26) and making use of (4.22), it is simple to show that the 
blade-bound circulation T, ( r )  is given by 

(4.27) 4.n vz(r, o)( urn -k vz(r, 0)) 
52 

f s ( r )  = 

In the linear limit this gives 

(4.28) 

4.4. Optimum distributions 

Optimum circulation or axial velocity distributions for the actuator disk can be 
derived from the equations above using the calculus of variations. This can be done 
by minimizing the functional F(T,(r))  = Q - IT, where 1 is a constant Lagrange 
multiplier which is then chosen so as to give the correct thrust. Since in this case the 
functional F does not depend explicitly on dr,/dr, then the Euler-Lagrange equation 
reduces to 

aQ aT - = 1 - .  
ar, ar, (4.29) 

For contra-rotating propellers, V#(r,m) is zero and (4.29) gives the simple result 
that V,(r,O) = const is the optimum axial inflow distribution. For single-rotating 
propellers, making use of (4.14), the constant Lagrange multiplier can be shown to 
be 

and the optimum circulation distribution is given by 

(4.30) 

(4.31) 
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More detailed derivations of (4.30) and (4.31) are given by Breslin & Andersen 
(1994). Equation (4.30) is the well-known condition of Betz (1919), which also holds 
approximately for the case of a finite number of blades. This condition means that in 
the ultimate wake of the propeller, the streamlines lie along true helicoidal surfaces. 
The potential jump across each helicoidal surface gives directly the bound circulation 
of the corresponding blade section and the helix angle Phe, at radius r is given by 

tanBhel = I/r .  (4.32) 

In the limit of a lightly loaded propeller, the perturbation velocities in the ultimate 
wake can be neglected and the tip helix angle is given by (4.30) and (4.32) as 

tanblip = J/n, (4.33) 

where J = U,/nd is the propeller advance ratio, and d is the propeller diameter. 
To this level of approximation, the helicoidal stream surfaces move downstream at 

the free-stream velocity. If we do not neglect the perturbation velocities, then (4.30) 
is used to define a constant artificial velocity, the displacement velocity w*, through 
the relation 

u, + W *  

52 
= 1. (4.34) 

The helicoidal stream surfaces move downstream relative to the actuator disk at 
velocity Urn + w*. If d’ is the final contracted diameter of the slipstream, then the 
wake advance ratio J’ is defined as 

u, + w’ 
nd‘ ’ 

J’ = (4.35) 

and 

tan jtip = J*/n. (4.36) 

The optimum distributions derived above are not very good approximations for the 
finite blade case, because they do not vanish at the rim of the actuator disk. Optimum 
distributions for lightly loaded single-rotating propellers with a finite number of 
blades were derived by Goldstein (1929) by solving for the flow in the ultimate wake 
using the Betz condition. Goldstein’s distributions depend on the advance ratio J ,  
and Theodorsen (1944) extended Goldstein’s results to the heavily loaded propeller 
by using the wake advance ratio J’ rather than J .  Hough & Ordway (1965) have 
suggested that for practical blade numbers and advance ratios, the Goldstein optimum 
distributions can be approximated by 

(4.37) 

Stern et al. (1988) have used this distribution in their Navier-Stokes calculations. 
Theodorsen (1944) has used the Betz condition and the analogy between the flow 

of electric current and the flow of an ideal fluid to obtain optimum distributions 
for contra-rotating propellers with a finite number of blades from electrolytic tank 
measurements. He also verified that the Goldstein optimum distributions for single- 
rotating propellers could be directly measured in this manner. Theodorsen’s optimum 
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No of blades 
2+2 
2+2 
2+2 
4+4 
4+4 
4+4 
6+6 
6+6 
6+6 

J' B 
1.89 1.35 
3.14 1.49 
6.00 1.57 
1.55 1.81 
3.11 1.22 
6.34 0.91 
1.55 2.22 
3.12 1.50 
6.41 0.88 

TABLE 2. Representation of Theodorsen's distributions 

distributions for contra-rotating propellers can be closely approximated by a sum of 
elliptic and parabolic distributions of the form 

The values of B which give the best least-squares fit to Theodorsen's distributions are 
given in table 2 and the comparisons of (4.38) with Theodorsen's measurements are 
shown in figure 4. Analytic solutions for both elliptic and parabolic distributions are 
given later. 

Beginning with the work of Lerbs (1952), many workers have developed design 
methods based on lifting-line theory to obtain optimum circulation distributions for 
propellers with a finite hub diameter, and which can include the effect of the hull 
wake and other factors in the optimization. An account of these methods is given by 
Breslin & Andersen (1994). Modern propellers are optimized according to cavitation 
and vibration criteria in addition to optimum efficiency, with the result that a very 
wide range of practical propeller blade circulation distributions are to be found in the 
literature. Most distributions are designed to fall to zero at the hub radius, although 
circulation carryover to the hub may also occur. 

5. Methods of solution and results 
5.1. Simplified formulae along the axis of symmetry 

Before considering the general case, it is interesting to consider the axial velocity 
induced along the axis of symmetry, for which simplified formulae can be derived. 
For this case both (4.10) and (4.11) can be integrated immediately with respect to s 
(Gradshteyn & Ryzhik 1980) to give 

The radial integration above can be performed analytically for many radial distribu- 
tions of inflow velocity. For example, for a constant distribution then 
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I I I 

1.2 
(4 

3.12 
6.41 I 

0 0.2 0.4 0.6 0.8 1 .o 
rlR, 

RGURE 4. Theodorsen’s optimum circulation distributions for contra-rotating propellers with 
varous wake advance ratios. (a) 2+2 blade contra-rotating propellers. (b) 4+4 blade contra-rotating 
propellers. (c) 6+6 blade contra-rotating propellers. The lines show equation 4.38 and the symbols 
show the results of Theodorsen’s electrolytic tank measurements. 

hence 

I { (R,2 + 22)  1’2 ’ 

z 
Vz(0,z) = vzo 1 + 

which recovers (3.8). Other results for distributions which vanish at r = & are 

2 112 
V,(O,z) = V,O { 1 + & [In(% + (R: + z ) ) - ln(l z I)]} (linear), (5.2) 
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FIGURE 5. The variation of the axial velocity along the axis of symmetry 
for various radial load distributions. 

112 

Vz(O,z) = VZo { 1 + [ (1 + ( 2)2) - $!I} (parabolic), (5.3) 

(5.4) 
z2 - Ri 

~ ~ ( 0 ,  z) = ~~0 {I + 5 [ 2 - arcsin (-)I } (elliptic). 2% 2 z2 + R,Z 
The axial velocity distributions above are compared in figure 5. The downstream 
steady-state value is reached more rapidly for distributions which concentrate the 
load closer to the centre of the actuator disk. 

5.2. Analytic solutions for an even polynomial distribution 
The key to analytic solution of the generalized actuator disk equations derived earlier 
is the integral below, given by Gradshteyn & Ryzhik (1980), which is a variant of a 
well-known integral which Watson (1944) attributes to Sonine (1880): 

This integral allows the radial integration in (4.17) to (4.21) to be performed first for 
any radial distribution of axial velocity of the form 

VZ(I,O) = Vzo { 1 - (:)'y. 
The results of the integration are 
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The remaining integrations with respect to s in (5.7) to (5.11) are all of the form 
W 

= / $Jp(s%)Jv(sr)e-S"Ids. (5.12) 
J o  

For A,p and v integers, then integrals of the form defined by (5.12) can always be 
evaluated in terms of elliptic integrals using recursion relations derived from standard 
Bessel identities, as shown in the Appendix.? A number of the simpler integrals of this 
type are tabulated by Prudnikov et al. (1992), although sometimes with typographical 
errors. 

By superposition of axial velocity distributions of the type described by (5.6), 
closed-form solutions can be obtained for the general distribution below, which 
can approximate any practical distribution with finite radial gradient to any desired 
accuracy for N sufficiently large: 

(5.13) 

Wu (1962) has based his iterative method for the heavily loaded actuator disk on this 
distribution. A distribution with an infinite radial gradient at the blade tips cannot be 
adequately approximated by (5.13) alone, and it is necessary to include an additional 
basis function with the appropriate edge singularity. In the usual lifting-line theory of 
finite wings or propellers, the only typical spanwise distributions which have infinite 
tip gradients have square-root behaviour near the tips. A distribution of this type 
is the elliptic distribution and other distributions with square-root behaviour at the 
blade tips, such as (4.37), can be represented as the sum of an even polynomial 
distribution and an elliptic distribution, for which the solution is given later as a 
special case. The method of Lerbs ( 1952) predicts optimum circulation distributions 
for a propeller with finite hub which have an additional square-root singularity in 
the radial gradient at the hub radius. Solutions for a further basis function with this 
type of singularity are best obtained by integrating (4.17) to (4.21) first with repect 
to s, which gives a method similar to that of Hough & Ordway (1965). In practice, 
circulation carryover to the hub would prevent the build-up of infinite vortex density 
at the propeller-hub junction. 

The solutions for distributions described by (5.13) become increasingly complex as 
n increases, but this is not a problem when solving using recursion on a computer, 
and a small FORTRAN program using the routines of Press et al. (1992) has been 
implemented to solve cases of this type. Here explicit formulae will only be given for 
the simplest case of parabolic loading. 

t The Appendix is held in the editorial files and a copy may be obtained on request from the 
author or the Journal of Fluid Mechanics editorial office. 
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5.2.1. Parabolic loading 
For parabolic loading the prescribed inflow velocity is 

345 

Vz(r,O) = -(Ra v z o  2 - r 2 ). 
R,' 

With k and B as defined earlier in (3.2), the radial velocity is given by 

71 & 
v r ( r , z )  = -5 (6)lf2 [" - 

- -1 k K ( k )  
71 

(5.14) 

(5.15) 

(5.16) 

The radial velocity predicted by these equations is shown in figure 6 as a function 
of the radial coordinate for various axial locations. The radial field is a symmetric 
function of z and so only positive values of z are shown. The radial velocity component 
has its maximum well within the slipstream and has a continuous derivative at the 
vortical flow boundary. The maximum radial velocity at the disk is about 58% of 
the maximum induced axial velocity. In fact it is a feature of all of the solutions 
to be presented here that the induced radial velocity at the actuator disk is of the 
same order as the induced axial velocity, and therefore the assumption often made 
in developing actuator disk theory (for example Von Mises 1945) that the induced 
radial velocity can be neglected compared to the induced axial component is totally 
without foundation. 

The axial velocity component for parabolic loading is given by 

(5.17) 

(5.18) 

The radial variation of axial velocity predicted by (5.17) and (5.18) at various axial 
locations is given in figure 7. Unlike the uniformly loaded disk, the axial velocity 
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FIGURE 6.  The radial variation of the radial velocity for parabolic loading. The radial 
velocity is a symmetric function of the axial coordinate. 
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5 

FIGURE 7. The radial variation of the axial velocity for parabolic loading. 

is continuous across the vortical flow boundary, although the first derivative is 
discontinuous. 

The vector potential for parabolic loading is 

4r&(k2 - 2 ) )  E(k) + VzozkK(k) 
15r2 - 3R: + k2 

x (3 [(R,' - r2)z2 - 6r4 + 2R,(r2 + R,)] +2r2Ri 

+Vz, ( 2r2(1 R," - r2 1 +2z2)- I R," - r4 I 
8rR; 

24n (r3R,S)'12 

16 - 32k2 + 19k4 - 3k6 

A & J )  = 

2R,2 R; 
(5.19) 
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r 
K 

FIGURE 8. The perturbation streamline pattern for parabolic loading. The 
line encloses the region of non-zero vorticity. 

broken 

and 

16 - 32k2 + 19k4 - 3k6 

[ k4(1 - k 2 )  
[(R,' - r2)z2 - 6r4 + 2R,2(r2 + R,')] +2r2R: 

r4 ') A0(B, k )  + ( r  > %) . (5.20) 
+v,o ( 2r2(1 R,' - r2 I - 2 ~ ~ ) -  I R," - 

8rR; 

The perturbation flow streamline pattern derived from (5.19) and (5.20) is plotted 
in figure 8. 

5.3. Solution with finite hub: P-1842 and P-1843 propellers 
The method is easily extended to handle a finite hub. If H ( r )  is the Heaviside step 
function and & the hub radius then the axial inflow velocity for a finite hub can be 
written as 

where 
2n 

b , , = a n ( $ )  . 
of two hubless flows. 
(1983) for a series of five-bladed 

This reduces the finite hub case to a suueruosition 
Circulation distributions are given by Jbhnsson 

container-ship propellers with & = 0.2% and these distributions have been repro- 
duced in the recent book by Breslin & Andersen (1994). The circulation distribution 
for the P-1842 and P-1843 propellers can be represented for & < r < & by an 
even polynomial with coefficients a,, given in table 3. The radial distributions of 
V, and V, induced by this circulation distribution at various axial positions are 
given in figures 9(a) and 9(b) respectively. The radial velocity reverses direction for 



348 J .  T. Conwuy 

~ 

Coefficient Numerical value 
a0 -0.37 
a1 15.79 
a2 -43.65 
a3 11  1.22 
a4 -165.82 

a6 -38.53 
as 126.36 

TABLE 3. Coefficients for Johnsson's distribution 

\,-------- I----#/ --L 

-0.5 ! 
0 0.5 1 .o 

rlR, 
5 

FIGURE 9. The radial variation of (a) radial velocity and (b) axial velocity for a five-blade 
container-ship propeller with a finite hub. The hub radius is 0.2 of the disk radius. 

axial stations close to the actuator disk and has its maximum magnitude in the 
plane of the disk near the disk rim. The slope of the distribution is continuous 
at both the disk and hub radii. The axial flow is antisymmetric about the actu- 
ator disk plane for both r < & and r > &. Figure 10 gives the corresponding 
perturbation streamline pattern. In addition to slipstream contraction at the outer 
boundary of the vortical flow region, the flow exhibits initial slipstream expansion 
at the inner boundary followed by final contraction to the hub radius at down- 
stream infinity. The flow behind the actuator disk within the region enclosed by 
the streamline passing through the inner edge of the actuator disk at r = & is 
recirculating, with the recirculation region centred within the vortical flow region. 
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V . 7  I 

0 0.5 1 .O 1.5 
zlRa 

FIGURE 10. The perturbation streamline pattern for a five-blade container-ship propeller with a 
finite hub. The flow behind the actuator disk, within the innermost streamline passing through the 
disk, is recirculating. (a )  Overall streamline pattern. (b) Streamlines in recirculating flow region. 

5.4. Solution for elliptic loading 
Elliptic loading is a special case for which the solution can be stated in terms of 
elementary functions. The inflow velocity is 

Therefore the radial integrations in (4.17) to (4.21) are equivalent to 
1 

I ,  = V,& (1 - t2)'/*tJ0(s&r)dt. 

Integrating using (5.5) gives 

(5.22) 

(5.23) 

(5.24) 

The Bessel function in (5.24) can be expressed in terms of elementary functions 
(Gradshteyn & Ryzhik 1980) which gives 

-VZo d sin(&) 
s& ds I ,  = -- (-) . (5.25) 
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Substituting (5.25) into (4.17) to (4.18), integrating by parts and using standard Bessel 
integrals (Gradshteyn & Ryzhik 1980) gives 

V,(r,z) = 2r (i - a )  

-Z4(r,z) (z 2 0 and r > %), A + ( r , z )  = - 2 VZOR,2 
3r 

A+(r, z) = I+( r ,  z) (z < 0). 
where 

(5.30) 

(5.31) 

(5.32) 

In the equations above a is a dimensionless parameter given by 

(5.33) 
((R: - r2 - 2212 + 4 ~ z z 2 )  'I2 + R,Z - r2 - 2 2  

2R: 

In the plane of the actuator disk, the radial velocity field reduces to the simple 
equations below : 

u =  ( 

(I < %I,  (5.34) VZOar V,(r,O) = -- 
4% 

Hence an elliptic axial velocity inflow at the actuator disk corresponds to a linear 
radial velocity inflow at the disk. The maximum magnitude of the radial velocity is 
pV,o, which occurs at the disk rim. The radial distribution of V, given by (5.26) is I 
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FIGURE 11. The radial variation of (a) the radial velocity and (b)  the axial velocity for the 
elliptically loaded actuator disk. 

shown for various axial locations in figure ll(a). The radial distribution of V, is given 
for various axial positions in figure ll(b). The perturbation flow streamline pattern 
derived from (5.29) to (5.31) is shown in figure 12. 

5.5. Solution for a general polynomial loading 
If the radial integration of the general equations is performed last, then integral 
representations for velocities and vector potential can be obtained in terms of el- 
ementary functions. These integral representations may or may not be completely 
decomposable into elliptic integrals, as in the even polynomial case, but can always be 
evaluated numerically. Owing to the recursive nature of the solution, implementation 
of the method on a computer is simple. 

5.5.1. Radial velocity field 
Let 

N 

v,(~,o) = C aflrfl (5.36) 

and it is assumed that V,(& 0) = 0. Equation (4.9) for the radial velocity component 
can be integrated with respect to s to give 

n=O 

dr’. (5.37) dV,(r’, 0) (r’) e,,2 ( rI2 + r2 + z 2 )  
V,(r ,z)  = - 

x 1 dr’ 2rr‘ 
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FIGURE 12. The perturbation streamline pattern for the elliptically loaded actuator disk. 

Substituting (5.36) into (5.37) and replacing Q1/2 by its integral representation gives 

(5.38) 

Reversing the order of integration, the r’ integration can be performed for all values 
of n using recursion. Let X(r’, t, r, z )  = rr2 + r2 + z2  - 2r’r cos t ,  

Then In(r’, t, r,  z )  can be calculated from the recursion relation 
Ryzhik 1980) : 

and let 

(5.39) 

below (Gradshteyn & 

1/2 + (2n - 1)r cos t n-1 p - 1  

In(# ,  t ,  r ,  z )  = - (X(r’, t ,  r ,  z ) )  

The starting integrals for the recursion are 

Ifl-l(r’, t , r ,  z )  - -lfl-2(r’, t , r , z ) .  

(5.40) n n n 

11(r’, t, r ,  z )  = ( ~ ( r ’ ,  t, r , z )>  1’2 + r cos t ~ o ( r ’ ,  t ,  r , z ) .  (5.42) 

Hence the radial velocity field is given by 

(5.43) 
R 

fl= 1 

5.5.2. Axial velocity field 

of the integral 
Solution of the axial velocity field using (4.18) and (4.19) is equivalent to evaluation 

I(r ,  z) = lR e-’lZl V,(r’,O)r‘Jo(sr’)Jo(sr)ds dr’. (5.44) az 
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Performing the s-integration gives 

Proceeding as for the radial velocity component, and performing the differentiation 
with respect to z gives 

As before, the radial integration in (5.46) can be performed for all values of n by 
recursion. Let - rm+ldr’ 

Zn(r’, t, r ,  z )  = 1 X(r1, t, r ,  z)3/2* 

Then the recursion relation for the Tn is (Gradshteyn & Ryzhik 1980) 

(n  - 1) (X(r1, t ,  r ,  z ) ) ’ /2  

h r‘” (2n - 1)r cos t- 
In-l(r’, t, r,  Z )  n - 1  In(#, t ,  r,  z )  = + 

n -  
1n-2(rt, t, r ,  z).  -- 

( n -  1) 
The starting integrals for this recursion are 

h 1 - rr ’cos t  
l o ( # ,  t ,  r ,  z) = - 

(1-2 sin2t + z2) (X(t-1, t ,  r ,  z ) ) ’ / ~ ’  

h 

Il(r’, t ,  r,  z )  = - 
( z2  - r2 cos 2t)r’ + r cos t 

(r2 sin 2t + 2 2 )  (X(r1, t ,  r ,  z))’/’ 
+ In [2 (X(r’ ,  t, T,  z ) )  1/2 + 2(r’ - r cos t)J . 

(5.50) 
Hence the integral Z(r,z) is given by 

and the solution for the axial velocity is 

Vz(r , z )  = 2Vz(r,z) - I ( r , z )  ( z  2 O), 

(5.47) 

(5.48) 

(5.49) 

7 

(5.51) 

(5.52) 

Vz(r,  z )  = Z(r, z )  ( z  < 0 ) .  (5.53) 

5.5.3. Vector potential and stream function 
The vector potential is given by 

A&, z )  = &l(r) - A92(r, z )  ( z  2 0) , 

where 

(5.54) 

(5.55) 

(5.56) 
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N 

A42(r,z) = 1" Lrn uflrffle-"l'l Jo(sr')Jl(sr)ds dr'. 
n=O 

(5.57) 

Performing the s-integration in (5.57) and then substituting the integral representation 
given in the Appendix for the integral Z~O,OJ~  gives 

The radial integration in (5.58) above can be performed for all values of n to give 

In (5.59), the I ,  are as defined above for the radial field case and satisfy the same re- 
currence relation. A small FORTRAN computer program has been written implementing 
the arbitrary polynomial method given above. This program has been checked against 
the closed-form solutions derived using the alternative method for even polynomials 
and was found to agree perfectly. 

6. Comments and conclusions 
A general method of solving analytically for the flow induced by a propeller actuator 

disk with an essentially arbitrary radial distribution of load has been developed. The 
method has been used to complete the solution of Hough & Ordway (1965) for the 
uniformly loaded actuator disk and was then applied to various radial distributions 
of load. The method shows that the induced radial velocity component in the plane 
of the actuator disk is comparable in magnitude with the induced axial component. 
It has been found that the optimum load distributions for a contra-rotating propeller 
with a finite number of blades obtained by Theodorsen (1944) from electrolytic 
tank measurements can be represented as a superposition of parabolic and elliptic 
distributions, which are the distributions which give the simplest explicit formulae. 
The method has been applied to a practical propeller case with a finite hub, and 
it was found that in the hub region there is slipstream expansion followed by 
contraction to the hub radius far downstream. The method is suitable for calculation 
of the slipstream effect on complex configurations by embedding it in a suitable 
boundary-integral method, and can be extended into the compressible flow regime 
using compressibility corrections. 

The method applied here to the actuator disk will also solve all the analogous 
electromagnetic problems associated with both semi-infinite and finite solenoids and 
radial distributions of solenoids. The magnetic fields induced by a semi-infinite 
solenoid distribution are exactly analogous to the slipstream solutions presented here, 
and the fields induced by a radial distribution of solenoids of finite length is obtained 
by superposition of two semi-infinite distributions of opposite sign and axial relative 
displacement equal to the solenoid length. 
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